object-free category - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

object-free category - перевод на русский

CATEGORY ADMITTING TENSOR PRODUCTS
Tensor category; Lax monoidal category; Monoidal categories; Identity object; Unit object; Free strict monoidal category; Internal product; Unitor; Strict monoidal category; Category of endofunctors; Monoidal category of endofunctors
  • This is one of the diagrams used in the definition of a monoidal cateogory. It takes care of the case for when there is an instance of an identity between two objects.
  • This is one of the main diagrams used to define a monoidal category; it is perhaps the most important one.

object-free category      

математика

безобъектная категория

моноид

monoidal category         

математика

моноидальная категория

internal product         

математика

внутреннее (скалярное) произведение

Определение

Категория
Категория (от греческого слова kathgorew, обвиняю) - логический иметафизический термин, введённый Аристотелем, ныне употребляемый взначении данном Кантом: К. - априорное понятие рассудка, условиевозможности мышления. В индийской философии, в системе Вайсешика,встречается термин падарта, весьма близкий к Аристотелевому пониманию К.шесть К., приводимых в сочинениях этой школы, тожественны сАристотелевскими, почему и возникло предположение о возможномзаимствовании этого учения греками у индийцев. Но это недопустимо уже похронологическим основаниям, ибо образование различных систем индийскойфилософии в известном теперь виде достоверно относится лишь к началусредних веков. Более чем вероятно обратное предположение - о влияниигреческой философии на индийскую. Аристотель разумеет под К. наиболееобщие понятия, служащие предикатами, выводит их из грамматических форм инасчитывает их 10: субстанция (ousia), количество (poson), качество(poion), отношение (proV ti), где (pou), время (pote), положение(keisJai), обладание (ecein), действие (poiein) и страдание (paocein). Визвестном смысле можно смотреть на пифагорейскую таблицу 10противоположностей, как на попытку перечисления К. (конечное ибесконечное, парное и непарное, единство и множество, свет и тень, благои зло, квадрат и иные фигуры). Аристотелевская таблица К. представляетнесовершенства двоякого рода: случайность выведения (из частей речи) исводимость одних К. к другим. Стоики были правы, когда они вместо десятиАристотелевых принимали лишь четыре: субстанция, качество, модальность иотношение; не хватает здесь только К. количества. Плотин, в первых трёхкнигах шестой "Эннеады", подробно критикует Аристотелеву таблицу ипредлагает свою, которая, однако, в истории не играет никакой роли. Всредние века Раймунд Лулльский (1234 - 1315) пытался перечислитьпринципы или самые общие понятия и самые общие отношения мышления кпредметам. Эти принципы он располагал в виде табличек, причём изразличных комбинаций принципов должны были получаться всевозможные новыеточки зрения. Таким образом его К. должны были служить своего родалогикой открытий. Современное определение термина К. принадлежит Канту.Его учение о четырёх основных, распадающихся как бы на 12 видовых К.,представляет тот же недостаток, что и Аристолево. Кант не выводит К. -формы рассудка - из деятельности рассудка, а берёт их из готовыхсуждений; случайный характер К. и недостаток выведения - вот упрёки,которые делает Канту Фихте. Нужно вывести все К. из высшего их основания- из единства сознания. Задачу эту полнее, чем Фихте, решил в своейлогике Гегель. Под К. Гегель разумеет тоже, что и Кант, толькорешительнее придаёт им метафизический характер. Средством выведения К.служит диалектический метод. Началом процесса образования К. являетсясамое отвлечённое, бедное по содержанию понятие бытия, из которогополучаются сначала К. качества, потом количества и т. п. Из новейшихпопыток преобразования К. внимания заслуживает попытка Милля. См.Trendelenburg, "Gesch. der Kategorienlehre" (Б., 1846). Э. Радлов.

Википедия

Monoidal category

In mathematics, a monoidal category (or tensor category) is a category C {\displaystyle \mathbf {C} } equipped with a bifunctor

: C × C C {\displaystyle \otimes :\mathbf {C} \times \mathbf {C} \to \mathbf {C} }

that is associative up to a natural isomorphism, and an object I that is both a left and right identity for ⊗, again up to a natural isomorphism. The associated natural isomorphisms are subject to certain coherence conditions, which ensure that all the relevant diagrams commute.

The ordinary tensor product makes vector spaces, abelian groups, R-modules, or R-algebras into monoidal categories. Monoidal categories can be seen as a generalization of these and other examples. Every (small) monoidal category may also be viewed as a "categorification" of an underlying monoid, namely the monoid whose elements are the isomorphism classes of the category's objects and whose binary operation is given by the category's tensor product.

A rather different application, of which monoidal categories can be considered an abstraction, is that of a system of data types closed under a type constructor that takes two types and builds an aggregate type; the types are the objects and {\displaystyle \otimes } is the aggregate constructor. The associativity up to isomorphism is then a way of expressing that different ways of aggregating the same data—such as ( ( a , b ) , c ) {\displaystyle ((a,b),c)} and ( a , ( b , c ) ) {\displaystyle (a,(b,c))} —store the same information even though the aggregate values need not be the same. The aggregate type may be analogous to the operation of addition (type sum) or of multiplication (type product). For type product, the identity object is the unit ( ) {\displaystyle ()} , so there is only one inhabitant of the type, and that is why a product with it is always isomorphic to the other operand. For type sum, the identity object is the void type, which stores no information and it is impossible to address an inhabitant. The concept of monoidal category does not presume that values of such aggregate types can be taken apart; on the contrary, it provides a framework that unifies classical and quantum information theory.

In category theory, monoidal categories can be used to define the concept of a monoid object and an associated action on the objects of the category. They are also used in the definition of an enriched category.

Monoidal categories have numerous applications outside of category theory proper. They are used to define models for the multiplicative fragment of intuitionistic linear logic. They also form the mathematical foundation for the topological order in condensed matter physics. Braided monoidal categories have applications in quantum information, quantum field theory, and string theory.

Как переводится object-free category на Русский язык